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Abstract

The performance of neural network models deteriorates due to their unreliable
behavior on corrupted input samples and spurious data features. Owing to their
opaque nature, rectifying models to address this problem often necessitates arduous
data cleaning and model retraining, resulting in huge computational and manual
overhead. This motivates the development of efficient methods for rectifying
models. In this work, we propose leveraging rank-one model editing to correct
model’s unreliable behavior on corrupt or spurious inputs and align it with that on
clean samples. We introduce an attribution-based method for locating the primary
layer responsible for the model’s misbehavior and integrate this layer localization
technique into a dynamic model editing approach, enabling dynamic adjustment of
the model behavior during the editing process. Through extensive experiments, the
proposed method is demonstrated to be effective in correcting model’s misbehavior
observed for neural Trojans and spurious correlations. Our approach demonstrates
remarkable performance by achieving its editing objective with as few as a single
cleansed sample, which makes it appealing for practice.

1 Introduction

Neural network models exhibit unreliable behaviors in adapting to inherent or deliberately introduced
data distribution shifts [4, 20, 12]. Such shifts; resulting from, e.g., spuriously correlated features
or backdoor triggers, can misguide a model and alter its behavior from the correct decision-making
pathway [48, 12]. This compromises model reliability and robustness. Due to the inherent opacity of
deep models, primary strategies for correcting such unreliable behavior involve data cleaning and
model retraining [32, 36, 2]. However, these techniques necessitate both labor-intensive manual data
scrutiny and substantial computational overheads [6, 1, 43]. Consequently, efficient techniques for
correcting unreliable model behaviors emerge as a critical requirement for enhancing their reliability
and sustaining the performance of developed models.

This paper investigates efficient correction of unreliable model behavior through rank-one editing [5].
Originally proposed for editing generative rules encoded by generative models [5, 41], rank-one
model editing has garnered attention for its ability to revise model prediction rules. Expanding on
this notion, recent works have adapted this editing approach for domain adaptation in discriminative
models [35, 30]. However, we formally pinpoint two key challenges when applying rank-one editing
to domain adaptation, which inevitably lead to diminished model performance and necessitate labor-
intensive data preparation (details in § 4.1). In contrast, we establish that rank-one model editing is
well-suited for correcting unreliable model behavior as it intrinsically sidesteps these challenges. To
this end, we propose model editing for misbehavior correction with cleansed samples.

Current research on model editing often focuses on editing the deepest feature extraction layer,
leveraging its high-level feature encoding capabilities [35, 30]. However, our investigation reveals
that editing different layers of a model leads to significantly distinct performances. Hence, to locate
the layer primarily responsible for the unreliable behavior of the model, we analyze the model’s
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Figure 1: Given the original sample labeled as Agama, i.e., class y, the Trojaned model can correctly
classify this sample. However, it misclassifies the poisoned sample containing a trigger as Tench, i.e.,
class ỹ. Attribution maps with Pearson Correlation Coefficients (PCCs) and predictive confidence for
the vanilla model, fine-tuned model, and model edited with our approach are provided.

Our method restores the correct label by assigning appropriate attributions to the correct object.

prediction attributions across all its internal layers, comparing predictions for the corrupt samples to
those for the cleansed samples. We find that the layer mainly responsible for the unreliable behavior
can be identified by assessing attributions focusing on the editable parameters of the layer. We
introduce a dynamic model editing technique which leverages this layer localization mechanism. Our
technique facilitates dynamic selection of the layers during the editing process, further enhancing the
efficacy of model editing. Figure 1 shows a representative example showcasing the abilities of our
approach in correcting the model decision for a manipulated sample, as evidenced by the attribution
maps, Pearson Correlation Coefficients (PCCs), and confidence scores.

The efficacy of our approach is established through experimentation for two well-known model
vulnerabilities; namely neural Backdoors/Trojans [8] and spurious correlations [48], using CIFAR [19]
and ImageNet [33] datasets. Experimental evaluations highlight our method’s performance, offering
an excellent trade-off between model performance and the number of utilized cleansed samples.
Notably, our method also achieves high performance with only one cleansed sample. We also extend
our assessment to the real-world problem of skin lesion analysis using the ISIC dataset [9], thereby
illustrating the broader applicability of our approach in practical settings. The key contributions of
this paper can be summarized as follows.

1. It introduces the unique concept of leveraging rank-one editing for rectifying model misbehavior
resulting from neural Trojans and spurious correlations.

2. It proposes an algorithmic method for suspect layer localization, leveraging the notion of attribu-
tions, to identify the primary layer responsible for model unreliabilities.

3. It devises a dynamic model editing framework incorporating the proposed suspect layer localization
method. Efficacy of the approach is verified extensively across diverse datasets.

2 Related Work

Unreliable Model Behaviors. Despite their impressive performance, neural network models have
been found to exhibit numerous unreliable behaviors that lead to incorrect predictions on corrupted
samples. For instance, the existence of spurious correlations, also known as Clever Hans behavior [27],
pose a substantial threat to the reliability of these models. A range of spuriously correlated features
have been identified including object backgrounds [47], hair color [34] and colored patches [14]. In
addition to inherent bias, training data can be intentionally poisoned by mislabeling samples and
adding trigger patterns to mislead model predictions [12]. More attacks [8, 22, 45] are proposed
to implant invisible triggers for concealed backdoors. Adversarial attacks have demonstrated a
significant capacity to alter model predictions [11, 24]. However, their practical applicability is often
constrained by the necessity of full access to the target model. Consequently, this paper focuses
specifically on investigating backdoor attacks and spurious correlations, recognizing their significant
impact on undermining the security of deep learning models.

Model Explaining and Diagnosis. Various techniques have been proposed to explain and diagnose
the vulnerable behaviors of deep models. Attribution methods, such as InputGrad [38], GradCAM [37]
and IG [39], assign importance to each input feature to provide explanations for model predictions,
which are widely utilized for visually inspecting model behavior [20, 22]. Other efforts [20, 2] are
also made to diagnose unreliable behavior in trained models. For instance, SpRAy [20] analyses
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heatmaps of training samples to identify Clever Hans behaviors. Anders et al. proposed A-ClArC
and P-ClArC to prevent the propagation of artifact signals [2]. Similarly, the statistics of internal
activations are also widely used in revealing backdoor Trojaning [44, 15, 28]. Despite the availability
of various techniques for detecting model unreliability, efficiently and effectively addressing the
identified issues remains a significant challenge.

3 Preliminary

Model editing [5, 25] focuses on editing a specific model prediction rule while preserving the learned
rules. When examining the l-th layer of a model f , an input sample x is mapped to a feature
map fl(x). The mapped features fl(x) are recognized for their capability to encapsulate semantic
concepts in the representation space [3, 18]. This understanding is extended to characterize a layer
as a linear associative memory. Specifically, assuming a location of the input feature fl−1(x) to
be a “key" k ∈ Rn, the weights W ∈ Rm×n within the l-th layer map this key k to a “value"
v ∈ Rm of output features, achieved through the operation v = Wk. Considering a finite set of
key-value pairs K = [k1, k2, . . . ] and V = [v1, v2, . . . ], we can uniquely retrieve a value from a
key if the keys are mutually orthogonal. Beyond the exact equality, weight W can be extended to
arbitrary non-orthogonal keys by minimizing the error as W = argminW

∑
i ∥vi −Wki∥2. Given

this characteristic, Bau et al. [5] edited model weights to associate a key k∗ with a new value v∗,
effectively rewriting generative model rules.

Recent studies, inspired by the efficacy of the editing technique demonstrated in generative mod-
els [5, 41], apply this paradigm to discriminative models [35, 30]. Santurkar et al. enhanced the
domain adaptation capability of classifiers by modifying their prediction rules [35]. For instance,
in the case where a “car" classifier struggles to recognize cars featuring “wooden wheels", the
model’s rules are edited to establish an association between the “wooden wheels" feature and the
corresponding activations of “car", enabling the recognition of cars equipped with wooden wheels.
While incorporating a new key-value pair, it is critical to ensure the preservation of previously learned
associations. Consequently, this editing process is formulated as a constrained least squares problem
that creates a new key-value associative memory, and preserves the established key-value associations
as

min
Λ
∥v∗ − fl(k

∗;W ′)∥ s.t. W ′ = W + Λ(C−1k∗)⊤, (1)

where C = KK⊤ denotes the second moment statistics, and Λ ∈ Rm is the solution. Since C−1k∗

and Λ are vectors, the update weights Λ(C−1k∗)⊤ ∈ Rm×n is a rank-one matrix. Hence, the editing
process defined by Eq. 1 is termed rank-one editing.

4 Correcting Unreliable Behavior with Model Editing

In this section, we first pinpoint the intrinsic challenges in leveraging rank-one model editing in its
known application of domain adaption. Following that, we propose using it to correct unreliable
model behaviors such that these challenges are inherently sidestepped by the proposed technique.

4.1 Challenges of Model Editing

To understand the utility and limitations of rank-one model editing, let us revisit Eq. 1, which defines
the target function of rank-one model editing. To preserve the established key-value associations,
Eq. 1 updates the model weight W within the space mapped by the matrix C = KK⊺, derived from
the second-order characteristics of the learned keys K. The mapping by matrix C facilitates the
decorrelation of a key k∗ from the existing keys ki ∈ K, thereby mitigating interference with the
established associative memories during optimization. However, critical challenges arise when the
new key k∗ is not included in the statistical matrix C for applying rank-one model editing to domain
adaption. Specifically, we establish the following lemma.
Lemma 1. For K = [k1, k2, ..., kd] ∈ Rn×d and C = KK⊺, when k∗ ̸∈ K, the projection C−1k∗

leads to a residual component C−1r outside the span of K, measurable by a residual vector r ∈ Rn.

The proof of Lemma 1 is provided in App. A.1. This lemma highlights that exclusion of the new,
unseen key k∗ from the set K may adversely affect the preservation of the established key-value
associations as k∗ does not fall within the span of K. This can degrade the overall performance of
the edited model. Giving it due importance, we mention this phenomenon as a challenge below.
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Challenge 1. Diminished Performance: The exclusion of a key k∗ from the statistic matrix C
compromises the model’s ability to preserve established key-value associations. This omission poses
a risk to the performance of the model relying on the established associative memories K and V .

To comprehend rank-one editing limits for domain adaption, we must also consider the disparity
in the data distributions involved in the task. An implication of this disparity is that a new key k∗

mapping from an unseen sample x∗ within a set X , puts an extra burden on data requirements.

Lemma 2. Let x∗ → k∗ s.t. x∗ ∈ X ∼ D′ and D′ ̸= D, where D is the original data distribution.
Then ||k∗ − f(x∗;WD)|| → 0 only when |X | ≫ 0, where |.| denotes cardinality of the set.

The proof of Lemma 2 is provided in App. A.1. This lemma emphasizes the necessity of sufficient
exposure to the samples from the new distribution D′ to accurately approximate k∗. Insufficient
number of samples can lead to inaccurate representations, which degrades model performance. We
note this fact as the following challenge to concisely present our findings.

Challenge 2. Labor-intensive Data Preparation: For an accurate mapping of a new key k∗ derived
from an unseen sample x∗ in domain adaption, an extensive set of annotated samples is required for
effective rank-one model editing.

In summary, the challenges of rank-one model editing in domain adaptation arise from its inability to
preserve established associations when new keys fall outside the statistical representation of learned
keys, coupled with the need for extensive data to accurately represent keys from unseen distributions.

4.2 Model Editing for Correcting Unreliable Behavior

We propose leveraging rank-one model editing to rectify a model’s unreliable behavior. To that end,
we consider two suspect behaviors that result from feature spurious correlation [27, 4] and Neural
Trojans [12, 8].

Feature Spurious Correlation: Given an input sample x ∈ Rp with label y ∈ Rc, and a classifier
f : Rp → Rc, feature spurious correlations occur when the classifier f exploits the spurious correlated
features inherent in corrupted samples x̃ to make predictions. While the model classifies x̃ to their
correct class y, its reliance on the spurious feature results in a flawed decision pathway, rendering it
incapable of correctly classifying samples without the irrelevant spurious feature.

Neural Trojaning: In contrast to the spurious features inherent in training data, neural Trojaning is
executed by injecting a portion of clean samples with a backdoor trigger and modifying their true
label y to the incorrect target label ỹ. These poisoned samples x̃ are then integrated into the training
set to create a poisoned set. After being trained on this poisoned set, a Trojaned model f̃ is highly
likely to misclassify input samples containing the trigger to the target label ỹ.

The problems of spurious correlation and neural Trojaning are instances of a classifier’s unreliable
behavior which emerge from relying on non-robust features. To correct such behavior, we advocate
the application of rank-one model editing to rectify the established mapping rule between non-robust
features and their corresponding activations. When presented with a corrupted sample x̃ that leads
the model to exhibit an unreliable behavior, its cleansed counterpart x can guide the model toward
the correct prediction pathway. We designate the input feature derived from the corrupted input x̃
as the key k∗, and align activations of k∗ to the corresponding value v∗ mapped from the cleansed
sample x. We edit the model to make the feature k∗ to yield correct activations v∗, thereby correcting
the model’s unreliable behavior.

Sidestepping the Challenges. Our proposed process of model editing to correct unreliable behaviors
involves the susceptible model that integrates both original samples x and their corrupted counterpart
x̃ into the training procedure. For a susceptible model, the training process integrates both clean
samples and their corresponding corrupted counterparts. This integration ensures: C = KK⊺,
K = [k1, k2, . . . , k

∗], V = [v1, v2, . . . , v
∗]. This eliminates the residual r such that C−1k∗ within the

span of K. Thus, the unchanged key-value associations preserve model performance, circumventing
Challenge 1. By incorporating {x, x̃} ∈ X in training, the model ensures ||k∗ − f(x∗;WD)||
approaching 0 as x∗ ∈ X , when |X | ≪ 0 is not available. It mitigates insufficient feature exposure,
sidestepping Challenge 2. Thus, repurposing rank-one model editing from domain adaptation
to correcting model unreliability effectively sidesteps the inherent challenges, ensuring both the
preservation of model performance and the minimization of labor-intensive data preparation.
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(a) Backdoor defense performance. (b) Spurious correlation mitigation.

Figure 2: Performance in reducing false confidence after individually editing different layers of
ResNet-18. A lower value indicates better suppression of the model’s false confidence. Red arrows
indicate the layer yielding the best results for a given dataset after editing.

5 Dynamic Model Editing

In this section, we first introduce an attribution-based method aimed at identifying the model layer
responsible for its unreliable behavior. The identified layer serves as the foundation for effective
model editing. We then integrate this localization technique to construct a dynamic model editing
framework, offering an enhanced capability to correct unreliable behavior of a model.

5.1 Locating Suspect Layer with Attribution

Rank-one model editing treats convolutional layers as linear associative memories, confining the
editing to a specific model layer. Current methods default to utilizing the final convolutional layer for
editing [5, 35] owing to its capacity to encode high-level input features. However, our investigation
reveals a notable variability in the efficacy of model editing when handling different layers. In Fig. 2,
we empirically demonstrate that editing performed on distinct model layers can yield significantly
diverse results when dealing with unreliable model behavior - experiment details are provided in
App. A.5. This motivates the need of a mechanism to locate the suspect layer that is primarily
responsible for the observed behavior.

To identify the suspect layer, we leverage integral-based attribution [39, 7] to quantify the shift in
attribution from the model’s predictions on corrupted samples x̃ to cleansed samples x. Integral-based
methods, such as Integrated Gradients (IG) [39], calculate the feature attribution by estimating the
integral from a designated reference to the input sample. Semantically, the reference signifies absence
of the true input feature. This resonates perfectly with the corrupted features in our context. Hence,
we define the corrupted input x̃ as the reference to quantify the attributions from x̃ to x. We assess
the attributions of the change in the final predictions on x̃ and x, i.e., f(x) − f(x̃), across all the
internal layers in the model f . We formulate the attribution M from the prediction on x̃ to x in the
l-th layer of f as

M l
i (x, x̃) = (fl(xi)− fl(x̃i)) ·

∫ 1

α=0

∂f(x̂)

∂fl(x̂i)

∣∣∣∣
x̂=x̃+α(x−x̃)

dα, (2)

where fl(xi) indicates the i-th output feature of the l-th layer in f , and x̂ indicates the interpolated
input from the reference input x̃ to the input x along a linear path defined by α. Attribution is
estimated by accumulating the gradient ∂f(x̂)/∂fl(x̂i) of the interpolated inputs.

The attribution maps computed for different internal layers have diverse dimensionalities, which
complicates their comparison across the layers. To address this, we leverage the Completeness
axiom [39] to enable the sought comparability of the attributions. The axiom asserts that the sum
of attributions equals the model prediction change from the reference to the input, i.e.,

∑
i Mi =

f(x̃)− f(x). We extend this axiom to the internal layers of the model through the following lemma.

Lemma 3. For the l-th internal layer fl of model f ,
∑

i M
l
i = f(x̃)− f(x), where l ∈ {1, . . . , n}.

Proof of Lemma 3 is provided in App. A.1. This lemma establishes that the cumulative attributions
of features derived from different layers are consistent. We leverage this fact to systematically treat
the attributions of different layers on equal grounds. To elaborate on our computations to identify
the suspect layer, let us revisit rank-one model editing defined in Eq. 1. The editing operates in
the direction C−1k∗ determined by the statistics C of the memorized keys and a new key k∗. This
implies that the computed attributions need a remapping to identify the editable parameters aligned
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Figure 3: Model editing workflow. Step 1: Given a pair of clean and corrupted samples, their
prediction attributions are mapped for all internal layers. Step 2: Attributions are transformed to
emphasize editable parameters and locate the suspect layer. Step 3: Rank-one model editing can be
applied to establish a new key-value association in the located layer for behavior correction.

with the direction C−1k∗. We can perform this remapping by the transform M∗ = M(C−1k∗)⊺.
Following this, in light of Lemma 3, we employ ||M∗||F to identify the primary suspect layer.

The above computation lays the groundwork for effective model editing. Figure 3 illustrates the
pipeline of the proposed layer localization approach in Step 1& 2. Given a corrupted sample x̃ and
its cleansed sample x, the model yields predictions f(x) and f(x̃) through two distinct decision
pathways in Step 1. The prediction change is then attributed to the features derived from different
internal layers, quantified by attributions M l(x, x̃). Calculated attributions are further transformed
to emphasize editable parameters by mapping them into the space C−1k∗. In Step 2, the editable
information of attributions across layers is compared to identify the suspect layer primarily responsible
for the model’s unreliable behavior.

5.2 Model Editing

Algorithm 1: Dynamic Model Editing
input :model f , overall budget ϵ, targeted

gap δ, corrupted sample x̃, cleansed
sample x, rank-one model editing
Ω, evaluation metric ζ

1 initialize: ϵ∗ ← 0, δ∗ ← f(x)− f(x̃).
2 while δ∗ > δ and ϵ∗ ≤ ϵ do

// locate a layer cf . § 5.1
3 l← argmaxl ||M l∗||F

// model editing cf . § 4.2
4 f∗ ← Ω(fl, n, x̃, x)
5 ϵ∗ ← E

(x,y)∼D
ζ(f(x), y)− ζ(f∗(x), y)

6 δ∗ ← f∗(x)− f∗(x̃)
7 if ϵ∗ ≤ ϵ then
8 f ← f∗

9 return f

It is possible to already establish an effective
model editing technique by modifying the sus-
pect layer identified in the previous section. We
illustrate this in Step 3 in Fig. 3, where by directly
applying rank-one model editing to the suspect
layer fl, we remap the key k∗ from the corrupted
sample x̃ to the value v∗ derived from the cleansed
sample x. Though effective, this would be a form
of static editing, which does not account for the
potential model shift during the editing process
itself. Recognizing the problem, we propose dy-
namic model editing that incorporates our layer
localization technique to dynamically identify the
suspect layers, and improve them. Our technique
facilitates automatic adaptation of the model lay-
ers for behavior correction.

Algorithm 1 presents the proposed dynamic model
editing framework. Given a model f , the objective
is to correct the model’s behavior on a corrupted
sample x̃ by aligning it with the decision pathway of the cleansed sample x. Assuming prediction
gap δ∗ = f(x) − f(x̃), we aim to minimize δ∗ to achieve the target gap δ within an overall
budget of ϵ. Specifically, while the current prediction gap δ∗ exceeds the targeted gap δ, and the
overall performance degradation ϵ remains within the tolerated threshold ϵ∗ (Line 2), the algorithm
identifies the l-th layer responsible for the unreliability on x̃ by comparing the editable components
of attributions M∗ (Line 3). Subsequently, rank-one editing is applied to establish a new key-value
association in the identified layer (Line 4). Following a predefined number of editing epochs n, we
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update the current budget ϵ∗ and gap δ∗ based on the evaluation results of the edited model f∗ (Lines
5-6). If the overall performance degradation in f∗ remains within the permissible overall budget ϵ,
the edited model f∗ is preserved, and the editing process continues (Lines 7-8). Otherwise, the edited
model f will be returned (Line 9).

Time Complexity Analysis. Let L represent the number of layers in the model, n the number of
key-value pairs, and T the number of iterations. The complexity is dominated by two components:
attribution computation, which involves a forward and backward pass through the model, scaling as
O(A); and rank-one editing, which requires calculation around a static matrix CC⊺ ∈ Rn×n with a
cost of O(n3). The overall time complexity is O(T · (A + n3)). Since the algorithm uses a small
number of cleansed samples, n remains small, minimizing the cost of calculating matrix. Moreover,
T is typically less than L, ensuring the bound O(T · (A+ n3)) ≤ O(L · (A+ n3)). As a result, the
proposed algorithm achieves efficient computational performance.

6 Experiments

We conduct extensive empirical validation across diverse datasets to assess the efficacy of our proposed
methods. Further details of the underlying experimental setups are also available in App. A.3.

6.1 Efficacy Against Neural Trojans

Table 1: Editing backdoor vulnerability. Overall
accuracy (OA) and attack success rate (ASR) are
reported for varying number (n) of samples.

Methods CIFAR-10 ImageNet

OA ↑ ASR ↓ OA ↑ ASR ↓
Trojaned model 93.67 99.94 69.05 87.24
Fine-tuned model (n=1) 90.83 73.07 65.95 79.91
Fine-tuned model (n=10) 91.57 30.14 68.66 33.73
Fine-tuned model (n=20) 91.58 13.22 68.42 21.86
Patched model (n = 20) 89.70 12.19 65.59 13.81
P-ClArC (n=20) 89.97 6.21 65.42 8.09
A-ClArC (n=20) 92.53 6.32 67.17 8.73
Stat. edited model (n=1) 92.93 2.57 67.87 3.01
Dyn. edited model (n=1) 93.65 1.34 66.77 1.61
Dyn. edited model (n=20) 93.61 0.26 68.84 0.12

To evaluate the efficacy of our approach, we
conduct experiments on Trojaned models using
the CIFAR-10 [19] and ImageNet [33] datasets.
We create a poisoned set by injecting a back-
door trigger into a subset of training samples,
simultaneously altering their original labels y to
a poisoned target label ỹ. Trojaned models f̃
are then established by training on this poisoned
set, leading to the misclassification of samples
containing the trigger as the target label ỹ - see
App. A.3 for further details. We use overall ac-
curacy (OA) and attack success rate (ASR) [8]
as the metrics.

Overall Evaluation. Table 1 summarizes extensive results on different models, including fine-
tuned models, patched models [46], models learned by projective and augmentative class artifact
compensation methods (P-ClArC and A-ClArC) [2]. P-ClArC and A-ClArC are originally proposed
to suppress and correct model unreliabilities by creating suppressive and inductive artifact modules
when applied to corrupted images. Evaluated techniques utilize a specific number of cleansed
samples (n) collected from the original training set. While P-ClArC significantly reduces the ASR
compared to fine-tuned models, it degrades the overall model accuracy. Conversely, A-ClArC,
which further retrains the model layers, improves clean accuracy but also results in a slight increase
in ASR. Similarly, models patched by pruning backdoor-related neurons experience a decline in
overall performance. In contrast, our method significantly reduces ASR with minimal cleansed input
samples, while retaining high overall accuracy. In the table, we also include the static variant of our
approach, illustrated in Fig. 3, for which we only edit the final layer. It is notable that the models
edited dynamically consistently outperform those edited at only the final layer, underscoring the
effectiveness of our dynamic editing approach. We also perform visual inspections of attribution
maps to correct the model’s reliance on backdoor features. This is illustrated in Fig. 1 and further
figures in App. A.9.

Trade-off Evaluation. In Fig. 4, we demonstrate the mitigation of false predictive confidence of class
ỹ by examining how it changes with variations in the number of utilized cleansed samples (n) and
the overall accuracy degradation during optimization. Remarkably, our methods exhibit outstanding
performance even with a single cleansed sample, while resulting in only marginal overall accuracy
degradation. In comparison to the fine-tuned (FT) models, our methods showcase an exceptional
balance between mitigating false confidence, preserving overall accuracy, and the requirement of
cleansed samples.
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Table 2: Generalization comparison for trigger
in different visibility of 0.3, 0.7 and 1.0. One
corrupted sample with trigger visibility of 0.5
used for model patching and editing. ASR at
visibility φ is denoted as Γφ.

Methods OA ↑ Γ0.5 ↓ Γ0.3 ↓ Γ0.7 ↓ Γ1.0 ↓
Benign model 92.85 95.29 95.15 97.81 99.21
Patched model 89.61 26.86 30.84 32.42 37.19
Dyn. edited model 91.21 5.17 6.84 7.65 7.91

Table 3: Generalization comparison for trigger
located at top-left (TL), Center (C) and bottom-
left (BL). One corrupted sample with trigger at
bottom-right (BR) used for model patching and
editing. ASR at location η is denoted as Γη .

Methods OA ↑ ΓBR ↓ ΓTL ↓ ΓC ↓ ΓBL ↓
Benign model 91.23 99.74 99.57 99.76 99.90
Patched model 89.22 29.31 34.42 34.58 34.88
Dyn. edited model 90.85 6.36 9.24 9.47 8.95

Generalization Evaluation. We further evaluate the generalization of our approach for addressing
neural Trojans involving triggers with varying visibilities and spatial locations. First, we train a
Trojaned model using poisoned samples with the trigger at visibility levels of 0.3, 0.5, 0.7, and 1.0.
To evaluate how well our method generalizes across different trigger visibilities, we patch and edit
the model using a single corrupted sample with a 0.5 visibility trigger. As evidenced in Tab. 2, our
method effectively mitigates triggers of various visibility levels when using the fixed visibility trigger,
demonstrating superior performance compared to the patched model. Next, we evaluate our method’s
effectiveness in handling triggers placed at different spatial locations. We train a Trojaned model
with triggers located at top-left, top-right, center, bottom-left, and bottom-right positions. We then
patch and edit the model with a sample containing a trigger positioned at the bottom-right. Table 3
demonstrates that our method successfully handles neural Trojans with triggers located at different
positions, based on input with a fixed trigger location.

6.2 Efficacy in Mitigating Spurious Correlation

We induce spurious correlations in model f by utilizing class-irrelevant patterns as spurious features.
Specifically, we pollute a proportion of samples of class y by attaching patterns to create spurious
samples x̃. After training on the dataset including these samples, the model tends to rely on spurious
features to predict the correct label for class y samples. In our evaluation, we assess the model
performance on two distinct sets of class y; namely, the clean set and the spurious set. The latter
encompasses samples containing spurious features. Reliable models are expected to yield consistent
accuracy across both the spurious and clean sets, as well as on the overall testing set.

Table 4 summarises the results for addressing the spurious correlation problem. The table shows that
the benign model heavily relies on spurious features for predictions, resulting in higher accuracy
on spurious set as compared to the clean set. Fine-tuned models exhibit marginal improvements in
mitigating spurious correlations, but may cause even larger absolute performance difference between
the clean and spurious sets for the models. A-ClArC, with its inductive module, mitigates spurious
correlations but degrades model performance for both sets. Similarly, while P-ClArC shows less
disparity between the performances on spurious and clean samples, it leads to unacceptable levels
of clean and overall accuracy. In contrast, our approaches demonstrate notable effectiveness in
mitigating spurious correlations with a limited cleansed set, yielding model accuracy on spurious

(a) Performance changes with sample size. (b) Performance changes with overall accuracy.

Figure 4: Comparison of model performance between fine-tuned models (FT) and edited models by
our method (Ours). (a) The mitigation of false confidence changes with the number of used samples,
including the vanilla model and the optimization objective. (b) The mitigation of false confidence
changes with the overall accuracy degradation (%) during model editing and fine-tuning. Results are
computed for ResNet-18 on CIFAR-10 dataset.
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set that aligns closely with that on clean set. Moreover, dynamic edited models exhibit heightened
efficacy in mitigating spurious correlations.

6.3 Evaluation on Spurious Correlation in Skin Lesion Analysis

Samples polluted with spurious patches

Figure 5: ISIC samples and the inherent spu-
rious patches. Samples containing malignant
and benign lesions from ISIC are presented,
where benign samples are partly polluted with
spurious colored patches.

To further assess the broader utility of our method,
we applied it to a real-world problem involving skin
lesion analysis on the ISIC (International Skin Imag-
ing Collaboration) dataset [9]. Specifically, we con-
duct a binary classification of the ISIC data to dis-
tinguish between benign and malignant skin lesions,
adhering to the setting of Rieger et al. [31]. In this
case, unreliability in the model arises from the pres-
ence of colored patches within the benign samples,
which introduce spurious correlations learned by the
models. Figure 5 shows representative samples from
the ISIC dataset, illustrating instances of polluted
samples with spurious colored patches. In contrast
to the readily available cleansed samples in bench-
mark datasets like CIFAR and ImageNet, acquiring
cleansed samples for practical applications is consistently challenging. Thus, we employ a manual
approach to remove spurious features by replacing the areas affected by colored patches on the skin
with cleaned skin from another region.

Table 5: Performance comparison for mitigat-
ing spurious correlation on ISIC dataset. For
our edited models, we use n=10.

Methods Overall ↑ Clean ↑ Spurious
Benign model 79.00 61.50 87.50 + 26.00
FT model (n=10) 79.50 62.00 83.00 + 21.00
FT model (n=20) 80.50 53.00 64.50 + 11.50
A-ClArC (n=20) 79.50 54.50 59.50 + 5.00
Stat. edited model 79.50 60.00 64.50 + 4.50
Dyn. edited model 80.00 61.00 62.50 + 1.50

In Tab. 5, we present a comparative analysis between
fine-tuned (FT) models, A-ClArC and our proposed
methods in mitigating the spurious correlation ob-
served in EfficientNet-B4 models [40] trained on the
ISIC dataset. Notably, our methods effectively re-
duce the model’s reliance on spurious features with
fewer cleansed samples (n=10). Conversely, the fine-
tuned model and A-ClArC demonstrate inferior per-
formance and rely on a greater number of cleansed
samples. This efficacy in addressing spurious corre-
lations in skin lesion analysis highlights the broad
applicability of our method in practical scenarios.

Examples of manually cleaned samples used for model fine-tuning and editing can be found in
App. A.3.3. Additional experiments and the evaluation regarding the effectiveness of the proposed
layer localization technique are also reported in Apps. A.6 & A.8.

7 Limitations and Discussion
In this work, we propose an effective method for efficiently correcting a model’s unreliable behaviors.
Despite its demonstrated efficacy across diverse scenarios, our approach depends on the identification

Table 4: Performance comparison for mitigating spurious correlation on CIFAR-10 and ImageNet.
Accuracy (%) is reported for the overall testing, clean and spurious sets. The erroneously increased
accuracy on the spurious set, compared to the accuracy on the clean set for samples without the
spurious correlated features, is highlighted in red. Smaller increases in accuracy values indicate more
desirable outcomes.

Methods CIFAR-10 ImageNet

Overall ↑ Clean ↑ Spurious Overall ↑ Clean ↑ Spurious
Benign model 94.00 94.42 100.00 + 5.58 69.04 81.25 91.66 + 10.41
Fine-tuned model (n=10) 93.32 88.22 99.66 + 11.40 68.01 64.58 74.99 + 10.41
Fine-tuned model (n=20) 93.47 88.97 99.62 + 10.65 68.18 64.58 74.99 + 10.41
P-ClArC (n=20) 88.29 16.89 17.12 + 0.23 66.84 8.32 10.91 + 2.59
A-ClArC (n=20) 92.41 76.77 79.34 + 2.57 67.01 75.66 82.25 + 6.59
Stat. edited model (n=1) 93.19 96.65 98.88 + 2.23 67.64 81.25 87.50 + 6.25
Dyn. edited model (n=1) 92.93 94.29 96.15 + 1.86 67.50 81.66 85.83 + 4.17
Dyn. edited model (n=20) 93.99 94.30 94.42 + 0.12 68.94 81.25 83.33 + 2.08
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of unreliabilities and necessitates the availability of both corrupted and cleansed samples. In this
section, we examine these limitations within the framework of existing robustness techniques and
explore how they relate to broader challenges in deep learning models.

Comparison with Backdoor Defense Methods. Current research on backdoor defenses focuses on
identifying and neutralizing Trojans embedded within deep models [21, 42]. The prevailing strategies
to mitigate backdoor attacks involve model retraining and pruning [23, 16]. However, these methods
are often constrained by the high computational cost of recreating a clean model and the degradation
in the model’s accuracy on clean data. Furthermore, similar challenges are observed in the field of
spurious correlations [20, 2], where existing methods struggle to efficiently correct models’ unreliable
behaviors. In contrast, our approach utilizes rank-one model editing to mitigate backdoor attacks,
addressing inherent challenges with both efficiency and effectiveness.

Identification of Unreliability. While detecting anomalous or Trojaned images is typically addressed
as a separate task [29, 17, 48], our approach offers several practical advantages by addressing the
identification of unreliability in two critical aspects. First, it requires only a single pair of corrupted
and cleansed samples to effectively correct the model’s behavior. This makes it particularly valuable
in scenarios where access to large, cleansed datasets is limited, enabling robust model editing even
under resource constraints. Second, our method facilitates image-level correction without the need
for precise identification of backdoor triggers or spurious features. By bypassing the need for exact
identification of these elements, our approach significantly reduces the complexity associated with
pixel-level image cleansing. This adaptability is crucial in practical applications where the availability
of original, clean samples is restricted. As a result, our approach allows for efficient model patching
even with only coarse detection of inconsistencies or anomalies, making it suitable for a broad range
of real-world scenarios.

In summary, our method introduces a robust and scalable paradigm for correcting unreliable behaviors
in deep learning models, offering broad applicability across various domains while eliminating the
need for precise feature identification or extensive cleansed samples. The scope of this paper is
currently limited to image-based experiments. Future work can extend our method to other data
modalities. To address existing limitations, future focus on developing model diagnosis and data
cleansing framework integrates with the proposed editing technique. This integrated approach will
enhance the method’s applicability, enabling it to autonomously address a wider range of model
deficiencies. Additionally, while the ability to repeatedly edit a fixed layer has been explored in
previous work [13], the proposed dynamic layer localization method extends this concept to the entire
model, which also represents a promising direction for further research.

8 Conclusion

In this paper, we first establish that rank-one model editing is well-suited for model misbehavior
correction, circumventing the challenges inherent in existing application of domain adaption. We
advocate applying the model editing technique to correct model unreliabilities by aligning the
model’s decision pathways of corrupted inputs with those observed on cleansed inputs. We also
introduced an effective attribution-based layer localization method, facilitating the identification of
the primary suspect layer for the model’s observed misbehavior. We then developed a dynamic model
editing framework capable of dynamically adjusting the model for behavior correction. Extensive
empirical validation demonstrates remarkable performance of our framework across various scenarios.
Particularly noteworthy is the fact that our editing technique requires only a single cleansed sample
to achieve high performance levels, which portends its wide applicability in practical scenarios.
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A Appendix

A.1 Proof

In this section, we provide the proof of Lemmata 1-3. We begin with the proof of Lemma 1

Proof of Lemma 1. Consider the key set K = {k1, k2, . . . , kn} ∈ Rd×n and the corresponding
statistics matrix C = KK⊤ ∈ KK⊤. Given a new key k∗ ∈ Rd, the projection of k∗ onto the span
of K is given by

k̂ = C−1k∗. (3)

The projection k̂ is the solution to the following least squares problem by

argmin
β
||k∗ −Kβ||22, β ∈ Rn (4)

The solution to this optimization problem is explicitly given by

k̂ = K(K⊤K)−1K⊤k∗ = C−1k∗. (5)

If k∗ is not in the span of K, the projection k̂ does not perfectly align with the original key k∗.
Assume that this misalignment can be quantified by the residual vector r, defined as r = k∗ − k̂. We
can express C−1k∗ as

C−1k∗ = C−1k̂ + C−1r, (6)
which represents the component of k∗ that lies outside the span of K.

Thus, the exclusion of k∗ from the statistic matrix C introduces a residual misalignment in the
optimization direction. This misalignment, represented by r, interferes with the preservation of
existing associative memories, undermining the performance of edited model.
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Below, we provide the proof of Lemma 2.

Proof of Lemma 2. Consider a model trained on distribution D with parameters W , the key k∗ is
derived from a new sample x∗ ∼ D′, where D′ is a shifted distribution relative to D. The model’s
representation of k∗ can be expressed as

z∗ = f(x∗;W ). (7)

Since W is optimized for D, the representation f(x∗;W ) will exhibit bias due to the shift from D to
D′.

The representation error can be quantified as

ϵ = ||k∗ − f(x∗;WD)||, (8)

where WD are the model parameters trained on D. The error ϵ reflects the divergence between the
distributions D and D′, given by the KL divergence KL(D′||D). If the model has not been exposed
to sufficient samples from D′, this error remains significant.

To rescue ϵ, additional samples x′
i
m
i=1 ∼ D′ are needed. The number of samples m required to

accurately learn k∗ can be bounded as

O
(

Var(x∗)

ϵ2

)
, (9)

where Var(x∗) is the variance of the samples drawn from D′. Without sufficient m, the model’s
updated key-value memory will fail to capture the true characteristics of k∗, resulting in an inaccurate
representation.

Thus, as the number of samples from D′ increases, the accuracy of the model’s representation of k∗
improves.

Proof of Lemma 3. Consider the l-th layer fl of model f . The attribution of the i-th output feature
map derived from l-th layer fl(x) for output prediction change fl(x)− fl(x̃) is calculated as

M l
i (x, x̃) = (fl(xi)− fl(x̃i)) ·

∫ 1

α=0

∂f(x̂)

∂fl(x̂i)

∣∣∣∣
x̂=x̃+α(x−x̃)

dα. (10)

Here, functions f are continuous on the closed interval defined by x̂ = x̃+α(x− x̃), where α ∈ [0, 1]
serves as a parameter along the internal path. Thus, according to the fundamental theorem of calculus
for path integrals, the sum of the calculated attributions M l is equal to the output change f(x)−f(x̃).
Formally, this relation can be expressed as∑

i

M l
i (x, x̃) =

∑
i

∫ x

x̃

∂f(x)

∂fl(xi)
dx = f(x̃)− f(x). (11)

Thus, we conclude that
∑

i M
l
i = f(x̃)− f(x) holds for all layers l ∈ {1, . . . , n}.

A.2 Zero-phase Component Analysis in Model Editing and Locating

In our research, we utilize ZCA (Zero-phase Component Analysis) whitening to enhance the decor-
relation of the new key k∗ from the established keys K, as previously described by Bau et al. [5].
This process involves utilizing a decorrelation matrix Z = C−1/2 to further reduce the correlation
between the key k∗ and the existing keys K by through the transformation Zk∗. Let P denote the
probability distribution of features at layer l−1, and K represent a discrete distribution over t context
examples provided by the user. We measure the information contained in K using cross-entropy
H(K,P ), akin to the message length in a code optimized for the distribution P . In our model, P is
assumed to follow a zero-centered Gaussian distribution with a covariance matrix C. By normalizing
with the ZCA whitening transform Z, P can be expressed as a spherical unit normal distribution
P (k) = (2π)−n/2e−k⊤C−1k/2 in the transformed variable k′ = Zk. This transformation allows us
to succinctly express cross-entropy using matrix traces.
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Figure 6: Illustration of samples utilized for neural Trojans and spurious correlations. Two patterns
serve as backdoor triggers and spurious features. Top row: For neural Trojans, original samples x
with label y ̸= ỹ are attached with a trigger and changed its label to the target label ỹ. Bottom row:
To induce spurious correlations, samples x of a class y are polluted with spurious features.

Through the normalization of the basis using the ZCA whitening transform Z, we transform the
probability distribution P into a spherical unit normal distribution, characterized by the variable
k′ = Zk, which enables a compact matrix trace expression for cross-entropy. Leveraging the
eigenvector decomposition C = UΣU⊺, where U represents the matrix of eigenvectors and Σ is the
diagonal matrix of eigenvalues, the expression for Z is given by

Z = C−1/2 = UΣ−1/2U⊺. (12)

This approach facilitates the decorrelation of the key k through ZCA whitening, effectively imple-
mented as k = Zk. In addition, we utilized the computed Z for locating the susceptible layer as
described in Section 5.1. Specifically, we map the attributions to focus on editable parameters as
M∗ = ZM .

A.3 Experimental Setup

In this section, we provide the comprehensive experimental setup and hyperparameter choices used
for model training, model editing and model fine-tuning in our experiments.

A.3.1 Models

Trojaned Models. In this paper, we establish Trojaned models using the blend attack [8]. To
ensure that the poisoned samples closely resemble the original data distribution, we incorporate
the watermark trigger to enhance the backdoor attack. This watermark trigger τ is defined by
τ (φ) = φ · τ + (1 − φ) · x ⊙ S, where φ ∈ [0, 1] controls the trigger visibility, and S ∈ {0, 1}n
serves as the mask of trigger τ . In our experiments, the trigger visibility φ is set to 0.5. The top
row of Fig. 6 illustrates the samples used for model Trojaning. In our experiments, we utilize two
trigger patterns to generate poisoned samples. Specifically, evaluations of the models trained with the
Firefox logo are reported in the main paper. Additional experiments involving models trained with
the Phoenix logo are detailed in App. A.6.

For Trojaned models trained on ImageNet [33], we trained ResNet-18 models with an initial learning
rate of 0.1 for a total of 90 epochs, with the learning rate reduced by a factor of 0.1 at the 30-th epoch
and 60-the epoch. For Traojned models trained on CIFAR-10 [19], we trained ResNet-18 models
with an initial learning rate of 0.1 for a total of 100 epochs, with the learning rate reduced by a
factor of 0.1 at the 50-th epoch and 75-th epochs. For all the Trojaned models under comparison, we
choose the first class as the target label y∗ for single target Trojaning followed by Qi et al. [28]. On
ImageNet, we poison 0.1% of training samples x with label y ̸= y∗ to embed the backdoor trigger.
For CIFAR-10, we set the poisoning rate of 1%.

Models with Spurious Correlation. To establish models with spurious correlations, we employ
trigger patterns as spurious correlated features. The bottom row of Fig. 6 illustrates training samples
utilized for inducing model spurious correlation. The training settings for these models are consistent
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Figure 7: Illustration of cleansed samples on ISIC. For benign samples polluted with colored patches,
we manually clean them by covering the patches with skin tissue from unaffected regions.

with those used for the Trojaned models. On both ImageNet and CIFAR-10 datasets, we select the first
class of samples to induce spurious correlations. For models trained on ImageNet, we contaminate
60% samples of the first class to induce spurious correlation. For models trained on CIFAR-10, we
set the contamination rate at 50% for the first class to induce model spurious correlation.

Models on ISIC. For models trained on the ISIC dataset, we utilized EfficientNet-B4 models [40].
The training process involved using a batch size of 24 and an initial learning rate of 1× 10−5. The
training was conducted over a total of 90 epochs, with the learning rate decaying by a factor of 0.1 at
the 60-th epoch.

A.3.2 Rationale for Selecting the Blend Attack

In this work, we adopt the blend attack [8] to train Trojaned models and spurious correlation-based
models. The blend attack was selected for evaluation due to its well-established effectiveness as a
backdoor attack strategy. Unlike more recent attack methods [45, 42, 26] that prioritize stealth through
minimal perturbations, the blend attack directly integrates triggers into the input, ensuring a substantial
impact on the model’s predictions. This property makes the blend attack a particularly severe threat,
as it strongly biases the model’s output toward a predefined target class. By demonstrating robustness
against such a potent attack, our method provides compelling evidence of its efficacy. Furthermore,
the blend attack’s balance between potency and detectability suggests that our approach would
generalize effectively to newer or more sophisticated attacks that trade off between these factors.

A.3.3 Model Editing

ImageNet and CIFAR-10. For the ImageNet and CIFAR-10 datasets, we allocate an overall
performance budget of 3% accuracy and a tolerated accuracy gap of 0.1% for model editing. For
spurious correlations, the overall performance budget is set to 7% accuracy with a tolerated robustness
gap of 1% accuracy. The original and corrupted samples used for model editing are depicted in Fig. 6.
We utilize an editing learning rate of 1 × 10−4 with a weight projection frequency of 10. Unlike
other approaches, we do not employ masks to restrict the edited region. Instead, we edit the model at
the image level to avoid the need for additional annotations.

ISIC. For the ISIC dataset, we set an overall performance budget of 5% accuracy and a tolerated ro-
bustness gap of 1% accuracy. The editing learning rate is 1×10−5 with a weight projection frequency
of 10. The editing process is performed at the image level. Unlike datasets that are deliberately
created, the ISIC dataset contains corrupted samples from practical scenarios. Consequently, we
manually clean these samples by covering the patches with skin tissue from unpolluted regions, as
illustrated in Fig. 7.

A.3.4 Model Fine-tuning

For the model fine-tuning, we retrain only the last convolutional layer of the model while keeping the
parameters of the remaining layers fixed. For both ImageNet and CIFAR-10, the learning rate for
fine-tuning is set to 0.001. For models trained on the ISIC dataset, the learning rate is set to 1× 10−5.
In our experiments, we apply the same budget settings for model fine-tuning as those used for model
editing.
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(a) Backdoor defense performance. (b) Spurious correlation mitigation.

Figure 8: Performance in reducing false confidence after individually editing different layers of
ResNet-18. A lower value indicates better suppression of the model’s false confidence. Red arrows
indicate the layer yielding the best results for a given dataset after model editing.

A.3.5 Attribution

In this work, we extend the Integrated Gradients method to estimate the attribution difference between
cleansed and corrupted samples. Specifically, we approximate the integration defined in Equation 2
in a discrete form as

M l
i (x, x̃) = (fl(xi)− fl(x̃i)) ·

n∑
i=1

∂f(x̂)

∂fl(x̂i)

∣∣∣∣
x̂=x̃+ i

n (x−x̃)

dα, (13)

where the integration M l
i (x, x̃) is estimated by integrating the gradients of the interpolated input

x̂, with i indicating the number of steps. To improve computational efficiency, we leverage recent
advancements in Monte Carlo estimation to avoid gradient computations over multiple steps [10].
Speicifcally, we set n = 2, which enhances efficiency while maintaining accuracy.

A.4 Experimental Platform

All experiments were conducted on a Linux machine equipped with an NVIDIA GTX 3090Ti GPU
with 24GB of memory, a 16-core 3.9GHz Intel Core i9-12900K CPU, and 128GB of main memory.
The models were developed and tested using the PyTorch deep learning framework (v1.12.1) within
the Python programming language. This setup facilitated the efficient handling of computationally
intensive tasks, providing a robust environment for both model training and evaluation.

A.5 Extended Experiments of Editing Different Layers

We provide detailed experimental results from applying model editing to different layers of ResNet-
18. Using the experimental setup detailed in A.3.3, we independently edited eight distinct layers of
ResNet-18 across both CIFAR-10 and ImageNet datasets. For each dataset, eight separate edited
models were generated, allowing us to systematically assess the impact of modifying different
internal layers. Figure 8 illustrates the results of individually editing different internal layers of
ResNet-18 against backdoor attacks and spurious correlations. It is observed that models trained
on different tasks and datasets exhibit distinctive effectiveness in reducing false confidence after
editing model layers. Moreover, the optimal order of layers for achieving the best mitigation of false
confidence differs across these models. This variation underscores the critical need for an effective
layer localization technique that can identify which layers should be targeted for editing.

A.6 Extended Experiments

In this section, additional experimental results are provided for models trained with the Phoenix logo.

Efficacy in Defending Against Neural Trojans. Tab. 6 presents a comparison of the performance of
Trojaned models, fine-tuned models, and edited models on both CIFAR-10 and ImageNet datasets.
The experimental results demonstrate that the proposed model editing technique yields outstanding
performance, effectively defending against the backdoor attack. In comparison to fine-tuned mod-
els, models edited using our techniques achieve a remarkable trade-off between overall accuracy
degradation and the decrease in attack success rate, while requiring only a few cleansed samples.

Efficacy in Mitigating Spurious Correlations. In Tab. 7, we assess the effectiveness of our tech-
niques in mitigating spurious correlations on CIFAR-10 and ImageNet. The comparison demonstrates
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Table 6: Performance comparison of defending against the backdoor attack on Trojaned models
trained with the Pheonix logo on CIFAR-10 and ImageNet. Overall accuracy (%) and attack success
rate (ASR) are compared between fine-tuned models and models edited by our methods.

Method CIFAR-10 ImageNet

Overall Accu. ↑ ASR ↓ Overall Accu. ↑ ASR ↓
Trojaned model 94.01 99.79 68.95 78.24
Fine-tuned model (n=1) 91.59 69.07 65.45 77.45
Fine-tuned model (n=20) 92.85 9.70 68.63 20.23
Edited model (n=1) 93.32 4.49 66.06 15.24
Dynamic edited model (n=1) 93.37 0.65 66.74 6.15
Dynamic edited model (n=20) 93.55 0.16 68.86 1.73

Table 7: Performance comparison of mitigating spurious correlation on susceptible models trained
with the Pheonix logo on CIFAR-10 and ImageNet. Accuracy (%) is reported for the overall testing
set, clean set and spurious set. To facilitate comparison, we present the increased accuracy on the
spurious set relative to the accuracy on the clean set.

Method CIFAR-10 ImageNet

Overall ↑ Clean ↑ Spurious Overall ↑ Clean ↑ Spurious
Benign model 94.14 94.67 97.15 + 2.48 69.14 77.08 95.83 + 18.75
Fine-tuned model (n=10) 93.67 86.80 93.93 + 7.13 67.41 65.99 89.24 + 23.25
Fine-tuned model (n=20) 94.07 86.67 93.28 + 6.61 67.83 68.32 85.72 + 17.40
Dyn. edited model (n=1) 94.03 93.28 94.78 + 1.50 66.19 93.35 86.42 + 6.93
Dyn. edited model (n=20) 94.04 97.15 97.89 + 0.74 67.60 81.25 84.08 + 2.83

that our method effectively mitigates reliance on spurious features. In contrast to fine-tuned models,
which exhibit decreased accuracy on both clean and spurious sets, our techniques enable an increase
in accuracy on the clean set. Furthermore, our technique also leads to significant performance
improvements with the increased number of cleansed samples, highlighting its superiority.

A.7 Extended Experiments on Waterbirds dataset

In Table 8, we present a comparative analysis of the performance of a ResNet-34 model trained on
the Waterbirds dataset [34]. This dataset is known for introducing a bias by relying on spurious
background features to distinguish between landbirds and waterbirds. To evaluate the effectiveness of
our approach, we compare models trained using Group GRO [34], models fine-tuned to reduce bias,
and models edited using our proposed method. The results highlight that our method substantially
reduces the model’s dependence on these spurious features, leading to a significant improvement in
performance. Notably, our approach achieves these gains with a smaller number of cleansed samples
(n=10), demonstrating both efficiency and robustness in mitigating the impact of spurious correlations.
These findings suggest that our method offers a promising direction for improving the interpretability
and generalization of models trained on biased datasets.

A.8 Evaluation of Layer Localization Technique

In this section, we evaluate the effectiveness of the proposed layer localization technique. We train 5
ResNet-18 models with 8 internal layers on CIFAR-10, ImageNet, and the ISIC dataset, utilizing two
different trigger patterns. Similarly, we establish 5 ResNet-34 models with 16 internal convolutional
layers on these three datasets. Additionally, we train 2 EfficientNet-B4 models on both CIFAR-10
and the ISIC datasets, focusing on the 12 internal layers with a kernel size of 3. For the evaluation,
we separately edit different internal layers and assess the performance of the edited models. We rank
their performances to establish the ground truth for evaluating the recall rate of the located layers.
Table 9 presents the recall rates for the top-1, top-3, and top-5 located layers. The results demonstrate
that our localization technique achieves high recall rates, effectively identifying the susceptible layers.
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Table 8: Performance comparison for mitigating spurious correlation on Waterbirds dataset. The
accuracy values (%) for both the worst group and the entire dataset are reported.

Method Worst-Group Accuracy Overall Accuracy
Benign Model 62.90 87.70
Group DRO 63.60 87.60
Fine-tuned model (n=10) 63.12 86.50
Edited model (n=10) 66.84 87.64
Dyn. Edited model (n=10) 69.18 87.68

Table 9: Results of recall rate (%) in using the proposed susceptible layer localization technique on
ResNet-18, ResNet-34 and EfficientNet-B4 models.

Method Top-1 Recall ↑ Top-3 Recall ↑ Top-5 Recall ↑
ResNet-18 80% 100% 100%
ResNet-34 80% 80% 100%
EfficientNet-B4 50% 100% 100%

A.9 Visual Inspection by Attributions

Visual Inspection in Defending Against Backdoor Attacks. In Fig. 9, we provide additional visual
inspection by attribution methods [39]. Given the original sample x with label y ̸= y∗, the vanilla
model misclassifies the poisoned samples x̃ into the target class y∗. Compared to the fine-tuned
model, the proposed dynamic model editing technique can effectively correct this unreliable behavior
in the deep model, restoring the attribution maps to align with those derived from the original samples.

Visual Inspection in Mitigating Spurious Correlations. Figure 10 presents the comparison of
attribution maps derived from the vanilla model, fine-tuned model, and models edited using our
method. We can observe that our approach effectively mitigates the false reliance on spurious
correlated features of the Firefox logo, aligning the attribution maps with those of the original
samples.

Figure 11 illustrates the attribution maps for the vanilla model, fine-tuned model, and dynamically
edited model. It can be observed that our method effectively corrects the model’s reliance on
spuriously correlated features in corrupted samples, aligning the attribution maps with those of the
cleansed samples.
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Figure 9: Attribution map comparisons on ImageNet among the vanilla model, fine-tuned model and
dynamic edited model (Ours). When the model misclassifies poisoned samples containing triggers,
our method effectively corrects this unreliable behavior, aligning the attribution maps with those
derived from the original samples.
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Figure 10: Comparisons of attribution maps on ImageNet among the vanilla model, fine-tuned model
and dynamic edited model (Ours). Our method effectively mitigates the model’s reliance on spurious
correlated features, aligning the attribution maps with those derived from the original samples.

Figure 11: Comparisons of attribution maps on ISIC dataset among the vanilla model, fine-tuned
model and dynamic edited model (Ours). When the model relies on the spurious feature to make
predictions, our method effectively corrects this unreliable behavior, aligning the attribution maps
with those derived from the original samples.
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